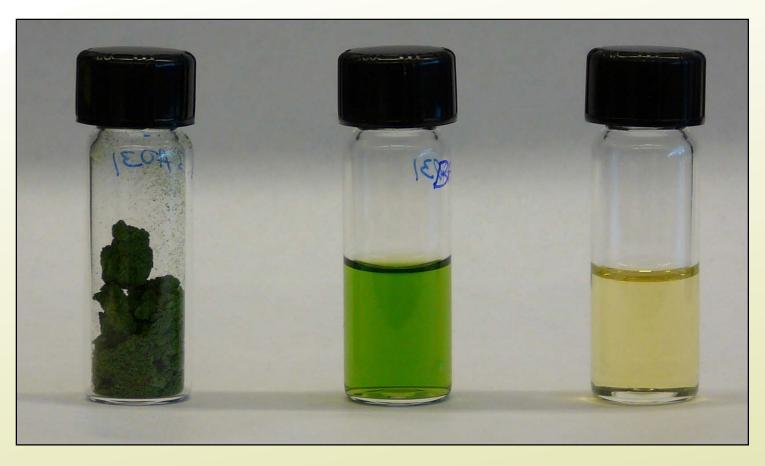


Technoeconomic Analysis of Algal Photobioreactors for Oil Production

Sustainable Energy Research Center

Pete Zemke, Byard Wood, Dan Dye Utah State University

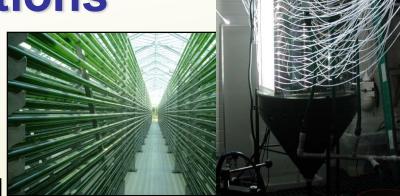
Presentation Outline


➢ Background

Predicting lipid production from Algae
 Theoretical maximum lipid production
 Production estimates for bioreactors
 Inefficiencies of algal lipid production
 Economic considerations
 Conclusions

Algae to Biodiesel

Dried Algae Algae Lipid Extract


Biodiesel

Algae: integrated solar collection, conversion, and storage system.

Bioreactor Options

<u> Open Ponds</u>

Advantages

- Simple/cheap to construct
- Easier to operate & maintain *Disadvantages* *
- poor light utilization
- difficulty controlling light and temperature
- contamination & evaporation

Closed Photobioreactors

Advantages:

- •Higher Productivity
- Less contamination, water use, & CO₂ losses
- Better light utilization & mixing
- Controlled culture conditions *Disadvantages:*
- Cost/complexity
- •Thermal management
- Oxygen accumulation
- Biofouling
- Cell damage by shear stress
- Deterioration of materials

* greenhouses overcome some disadvantages

Sustainable Energy Research Center

Bioreactor Design Issues

- Variables affecting algae growth and lipid production
 - Irradiance levels, light-dark cycles,
 - CO₂ concentration,
 - temperature, pH, salinity,
 - nutrients
 - O₂ concentration

Suspension versus Biofilm growth medium

- ➤ Scale-up
 - Gas (CO₂ & O₂) and nutrient management
 - Water management
 - Temperature management

Performance models

Algal Lipid Production

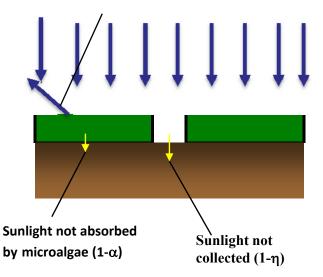
1. Microalgae, Sunlight, CO2, H2O, Nutrients produce mass

$$P_a = \frac{\tau \varepsilon_a \dot{E}_s}{E_a}$$

P _a	kg/m ² yr	Microalgae production rate
τ		Efficiency of light transmission to microalgae
Ea		Efficiency of conversion of incident sunlight to biomass in microalgae
Es	<i>kW/m</i> ²	Solar irradiance
E _a	kJ/g	Energy content of microalgae

 $E_a \approx f_L E_L + f_P E_P + f_C E_C$

E _a	kJ/g	Energy content of microalgae ($L = Lipids; P =$ Proteins; $C = Carbohydrates$)
f_L		Dry mass microalgae lipid content fraction
f_P		Dry mass microalgae protein content fraction
f _C		Dry mass microalgae carbohydrate content fraction



2. Transmission Efficiency of Sunlight to Microalgae

Sunlight reflected (1-ε)

τ	Efficiency of light transmission to microalgae
E _{opt}	Optical light distribution efficiency
α	Light absorption coefficient of microalgae
η	Land use efficiency
C _{PAR}	Fraction of sunlight that is photosynthetically active radiation ($PAR = 0.43$)

3. Solar Energy Capture Efficiency

$$\varepsilon_a = \varepsilon_{env} \varepsilon_{ph} u_p (1-r)$$

Ea	<i>Efficiency of conversion of incident sunlight to biomass in microalgae</i>
E _{env}	Losses due to sub-optimal environmental conditions
E _{ph}	Photosynthetic efficiency
<i>u</i> _P	Fraction of captured photons utilized by microalgae
r	Fraction of energy consumed by respiration in microalgae

4. Efficiency of Photon Utilization – Bush Equation

$$u_{p} = \begin{cases} \frac{I_{s}}{I_{I}} \left[\ln \left(\frac{I_{I}}{I_{s}} \right) + 1 \right] & I_{I} \ge I_{s} \\ 1 & I_{I} < I_{s} \end{cases}$$

<i>u</i> _P	Fraction of captured photons utilized by microalgae
I _I	<i>Photosynthetic photon flux density (PPFD) incident on microalgae, μ mole/m²-s</i>
Is	Saturation PPFD of microalgae, µ mole/m ² -s

5. Lipids that can be Converted to Biodiesel

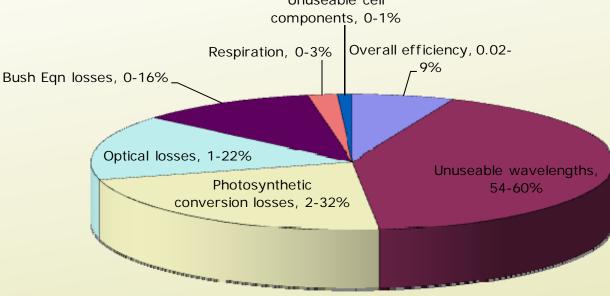
 $P_{CL} = \frac{f_{CL}P_a}{\rho_{CL}}$

P _{CL}	<i>L/m²-yr</i>	Rate of production of lipids useable for biodiesel from microalgae
f _{cl}		Dry mass microalgae lipid content fraction useable for biodiesel $< f_L$
P _a	kg/m ² -yr	Microalgae production rate
$ \rho_{CL} $	g/L	Density of lipids useable for conversion to biodiesel

Theoretical Maximum Production

 $P_{\text{CL,max}} = 43 \text{ L/m}^2\text{-yr} (45,600 \text{ gal/acre-yr})$

	Variables	Optimum Value
f_{CL}	Dry mass microalgae lipid content fraction	0.60/0.72
α	Light absorption coefficient of microalgae	1
τ	Efficiency of light transmission to microalgae	0.40
η	Land use efficiency	0.98
E _s	Total Solar Irradiance	12,000 kJ/m ² -yr
E _a	Efficiency of conversion of sunlight to chemical energy	0.22
E _{env}	Losses due to sub-optimal environmental conditions	1.0
E _{ph}	Photosynthetic efficiency	0.27
E _{opt}	Optical light distribution efficiency	0.96
E _L	Energy content of lipids	38kJ/g
<i>E</i> _{<i>P</i>,,<i>C</i>}	Energy content of proteins and carbohydrates	17kJ/g
Is	PAR saturation intensity	200 μmol/m²-s
I	Intensity of light distributed inside the photobioreactor 200 µmol/m ² -s	


Production Rates for open and closed Bioreactors

	_	Pond Bioreactors	Concentrator Bioreactor
P _{CL}	gal/acre-yr	4,200	9,300
Es	kW/m^2 -day	220	323
<i>u</i> _P		0.52	1.0
τ		0.32	0.20
Ea		0.079	0.189
f_{CL}		0.51	0.51

~50 - 90% of the losses are due to biological limitations in how efficiently sunlight is used.

Products from Microalgae

Chemical	Usage	Approx Value (\$/kg)
Phycobiliproteins	Medical Diagnostics	> 10,000
Astaxanthin	Food supplement: human, animal, aquaculture	> 2,500
Xanthophyll	Fish Feeds	~1,000
Beta-carotene	Food Supplement	> 500
Health Supplements	Dietary Supplements	~10
Biofuels	Energy	1.0 <

A production facility that produces higher value products along with lipids for fuel should be evaluated.

Economic Considerations

If a photobioreactor were built with a capital cost, *C*, to be recovered in *t* years, with an annual rate of return *i*, the required annual payment, *Q*, would be:

$$Q = \frac{Ci(1+i)^{t}}{(1+i)^{t}-1}$$

Q must be less than or equal to the revenue from the photobioreactor minus the expenses:

 $Q \leq \left(\frac{V_{CL}f_{CL}}{\rho_{CL}} + \sum_{i} f_{i}V_{i} + \sum_{i} S_{i} - \sum_{i} M_{i}\right)P_{a} - \sum_{i} A_{i}$

Q	\$/m ² -yr	Revenue from photobioreactor
V _{CL}	\$/L	Value of biodiesel feedstock (lipids)
f_{CL}		Dry mass microalgae lipid content fraction useable for biodiesel
f_i		Dry mass microalgae content fraction for product i
ρ_L	kg/L	Density of microalgae lipids
V _i	\$/kg	Value of non-lipid microalgae mass for product i
ΣS_i	\$/kg	Value of services provided
M _i	\$/kg	Per-kg cost of production
P _a	kg/m ² -yr	Microalgae production rate
ΣA_i	\$/m ² -yr	Annual operation costs

Example Annual Revenue

 $Q \le \left(\frac{V_{CL}f_{CL}}{\rho_{CL}} + (1 - f_{CL})V_a + S - M\right)P_a - A$

Q		Revenue from photobioreactor
V _{CL}	\$2-\$4 / gal	Value of lipids produced
f _{CL}	0.51	Lipid content of microalgae
$ ho_{L}$	0.88 kg/L	Density of microalgae lipids
V _a	\$0-\$0.05/kg	Value of non-lipid microalgae mass
S	\$0.2 - \$0.6/L	Value of services provided
М	\$0.1 - \$0.3/L	Per-kg cost of production
P _a	kg/m2-yr	Production rate of microalgae
А	10%-20% Q	Annual operation costs
L	-	

 V_a , S, M, and A are currently not well known, thus accurate revenue predictions are difficult to make.

	=	Heavy metals removal
S		Carbon sequestration
		Wastewater Treatment
	=	Upstream processing
		Supplemental nutrients
		Downstream
М		processing
		Packaging and
		shipping
		Waste disposal
	=	Labor
А		Electricity
А		Heating
		Maintenance

Projected Revenue from Microalgae

Pond Bioreactors

Lipid Annual Production
P_{CL} = 4,200 gal/acre-yr

Gross Annual Revenue
Q = \$10,500 - 22,500 /acre-yr

Concentrator Bioreactor

Lipid Annual Production
P_{CL} = 9,300 gal/acre-yr

Gross Annual Revenue
Q = \$23.200 - 49,600/acre-yr

Conclusions

- The use of sunlight to produce biodiesel using microalgae can only be expected to operate with efficiencies of at most 9%, and likely much less.
- 50-90% of the inefficiencies can be attributed to biological limits to the efficiency at which sunlight can be used.
- most significant improvements can be made by minimizing optical losses (maximizing the solar energy received by the algae) and minimizing light over-saturation of the microalgae.
- At very most, 43L/m²-yr of biodiesel can be expected from microalgae in the U.S

Conclusions

Biodiesel may not be the primary source of income

- ✓ Other products from microalgae pharmaceuticals, pigments, etc.
- Photobioreactor provides services nutrient removal, water purification, etc.
- ✓ Petroleum fuel additive
- Electricity generation from otherwise wasted infrared energy
 - ✓ 395 W/m² of PAR, 495 W/m² of infrared
 - ✓ At 15% conversion efficiency and \$0.05/kWh, electricity generation would add \$16/m²-year

✓ Process heat from IR energy

Acknowledgments USU Biofuels Team David Bayless Ohio University

Thank You

