Cell Based Assay for Discovery of Glycogen Synthase Kinase Inhibitors

Summary Background: Lithium exhibits numerous physiological effects in animals. For example, lithium mimics insulin action by stimulating glycogen synthesis and is remarkably effective for the treatment of mania in many human patients. Research over the years has demonstrated that lithium administers these effects, in part, through the inhibition of glycogen synthase kinase 3 beta (GSK3b), an enzyme involved in the regulation of glycogen synthesis and cell fate determination in diverse organisms such as humans, Dictyostelium, Drosophila melanogaster, and Xenopus laevis. But lithium treatment in humans is also accompanied by several serious side effects, such as tremor, renal dysfunction, thyroid abnormalities, and birth defects. Additionally, lithium is not administered to patients having significant renal or cardiovascular disease, severe debilitation or dehydration, and sodium depletion due to a risk of disease exasperations. Given these problems, it is imperative to discover other drugs that can inhibit GSK3 in the same manner as lithium but without the toxic side effects.

Invention: A simple and efficient cell-based assay that allows for quick and easy determination of novel GSK-3b inhibitors. In brief, a mixture comprising GSK-3, a source of phosphate, GSK-3 substrate, and assay buffer in the presence or absence of the test compound is measured for the level of phosphorylation of a known GSK-3 substrate. A lower level of phosphorylation of the GSK-3 substrate in the presence of the test compound compared with the level of phosphorylation of the GSK-3 substrate in the absence of the test compound indicates that the test compound is a GSK-3 inhibitor.

Applications Applications: A next generation method for discovery of lead compounds in the treatment of GSK-3?-related disorders, such as Alzheimer’s disease. The cell-based assay is applicable to diverse biological systems for discovery of glycogen synthase kinase inhibitors. The inhibition of GSK3b has dramatic morphogenic effects during the early development of numerous organisms, including humans, Dictyostelium, sea urchins, zebrafish, and Xenopus. In each case, components of the assay mixture (described below) are provided exogenously to a cell by microinjection and scored for their respective phenotypes.

Advantages: The system utilizes diverse biological readouts in order to monitor a test compounds activity against GSK3?. Those compounds exhibiting the expected phenotype are then tested in an in vitro assay for their ability to inhibit GSK-3b phosphorylation on a known substrate. The cell lysates from these assays are readily tested and quantified using any GSK-3? immunoassay kits.

Patent Status: 6,441,053 For Further Information Please Contact the Director of Business Development Vivian Berlin Email: [email protected] Telephone: (617) 495-0474

Inventor(s): Melton, Douglas

Type of Offer: Licensing



Next Patent »
« More Pharmaceutical Patents

Share on      


CrowdSell Your Patent