Laser Treatment of Cutaneous Vascular Lesions

Background Coagulate vessels often need multiple treatments before they can be destroyed. Current technologies are limited by the finite penetration depth of light and by the natural flow characteristics of blood vessels in tissue. As a result, clinical procedures are often unsuccessful at treating hypervascular lesions.

Invention Description This invention is based on a parent patent and considered an extension. The laser doses required are dramatically reduced over other hypervascular lesion treatment methods by using hyperosmotic chemical agents applied prior to laser irradiation. These chemical agents include, but are not limited to, glycerol, dimethyl sulfoxide, sucrose, and glucose. After desired optical and morphological changes are induced, laser radiation is applied to the lesion-reducing scattering in the biological tissue and reduction and cessation of flow in arterioles and venules. The changes allow the laser to thus be more directly applied to the vessels and concurrently reduce the required energy to destroy a given vessel.

Benefits

Reduces scattering in tissue Reduces number of laser doses needed to destroy vessel Changes from chemical agents alone are reversible When coupled with laser radiation, use of agents results in permanent blood vessel coagulation

Features

Delivers sufficient laser energy to a targeted blood vessel to destroy the vessel without damage to the epidermis and dermis Utilizes hyperosmotic chemical agents

Market Potential/Applications Could have significant impact on the clinical treatment of hypervascular lesions or other subsurface tissue targets.

Development Stage Proof of concept

IP Status One U.S. patent application filed

UT Researcher Gracie Vargas, Ph.D., Biomedical Engineering, The University of Texas at Austin Thomas E. Milner, Ph.D., Biomedical Engineering, The University of Texas at Austin Ashley J. Welch, Ph.D., Biomedical Engineering, The University of Texas at Austin Jennifer K. Barton, Ph.D., Biomedical Engineering, The University of Arizona Eric K. Chan, Ph.D., Electrical and Computer Engineering, The University of Texas at Austin

Type of Offer: Licensing



Next Patent »
« More Life Sciences Patents

Share on      


CrowdSell Your Patent