Tough, Self-Healing Silicone Materials

Siloxane- and organosiloxane-based materials (collectively termed "silicones") are ubiquitous in commercially available goods and high technology applications, often in the form of oils, rubbers, resins, and hard solids. Their general usefulness is due to their broad and tunable range of beneficial properties, such as their low dielectric constant, high thermomechanical stability, high biocompatibility, high optical transparency, and controllable hardness, porosity, and hydrophilicity. Moreover, silicones can be synthesized via low temperature processes that allow facile incorporation of organic components and molecular additives.

University of California researchers have developed novel silicone materials that further extend the range of beneficial properties that are controllable. In particular, the novel UC method of vulcanizing/curing silicones introduces cross-linking agents that efficiently disperse fracture energy in response to stress and that are capable of self-healing after yielding to rupture or deformation. Cross-links in the UC silicones will reform after being broken by thermal or mechanical forces, but still provide excellent tear-resistance. Another interesting property of the UC silicones, in contrast to existing silicone materials, is that they can be processed into new shapes even after being cured.

Because of these unique properties, UC silicones will likely offer improved performance and longevity for many new and existing silicone applications. Such applications might include advanced marine or biomedical adhesives, lightweight armors, protective, and/or decorative coatings, thermal insulators, optical and electronic components, satellites, and biomedical devices. Another important potential application of UC silicones involves physically or chemically responsive matrices for supporting other organic or inorganic components via dissolution, encapsulation, and/or covalent tethering.

REFERENCE: 2001-409

Patents:
US 6,783,709   [MORE INFO]

Type of Offer: Licensing



Next Patent »
« More Biotech Patents
« More Chemistry Patents

Share on      


CrowdSell Your Patent