In-Line Filter for Fiber Optic SMA Terminations

There is a current trend toward the use of fiber optics in various pieces of equipment, and towards miniaturization of such equipment, e.g. to develop handheld devices. Such bench top devices are sufficiently large in size, e.g., approximately three inches by six inches by two inches, to be unsuitable for use in typical hand-held devices. The optical component is typically relatively large, e.g., greater than one-half inch square or approximately one inch round to account for inaccuracies in positioning of the fibers and/or optical component, and to facilitate handling. Such an arrangement is wasteful of optical component materials and contributes unnecessarily to the cost of the device.

Additionally, bench top devices require a high degree of precision in alignment of the fibers and optical component, and are therefore subject to a risk of misalignment due to jarring, etc. Some such devices have adjustments to permit realignment, but any realignment process requires an undesirable amount of work and time.

While some couplers with in-line optical components are known in the art, such couplers lack sufficient versatility to permit easy interchangeability of optical components and/or to allow for interchangeability of optical components of various thicknesses, particularly for connectors unlike the ST and FC connectors, which have floating, spring-biased designs and therefore have a degree of built-in versatility. Unlike telecommunications applications, which primarily involve long-term use of a pre-selected optical component in a given coupler, in spectroscopic applications, optical components must often be interchanged for a given coupler, e.g. when using a different sensor to perform a different analysis, or when analyzing a next, different substance.

What is needed is a compact, lens-free fiber optic coupler that provides for secure alignment of fibers, conservation of optical component materials, easy interchangeability of optical components, e.g. without the need for supplemental support structures such as bushings, sleeves or rings, and accommodation of interchangeable optical components of various thicknesses, and therefore various types.

The present invention provides such a fiber optic coupler. In particular, the present invention provides a coupler for coupling a first fiber optic cable terminating in a first connector having a first ferrule to a second fiber optic cable terminating in a second connector having a second ferrule. The coupler includes a holder element and a mating element. The holder element defines a channel for receiving the first ferrule and a socket aligned with the channel for receiving an optical component. The holder element further defines a first cable connector adapted for connection to the first connector and a first element connector opposite said first cable connector. The mating element defines a channel for receiving the second ferrule, a second cable connector adapted for connection to the second connector and a second element connector opposite the second cable connector.

Accordingly, the holder element and mating element are connectable, with an optical component disposed within a coupler body defined cooperatively by the holder and mating elements, the optical component being aligned with the channels and positionable substantially contiguous with the first and second ferrules when attached thereto. The holder element and mating element are also readily disconnectable to allow for an easy exchange of optical components. The coupler eliminates the need for collimating lenses required by bench top devices and is compact, e.g. less than approximately one inch by one-half inch by one-half inch. In this manner, optical component materials may be conserved by fabricating them to fit within these relatively small dimensions.

The holder and mating elements are connectable in a manner permitting adjustment of the size of an internal chamber for holding an optical component, e.g by adjusting the extent to which one element is threaded onto the other. This allows the coupler to accommodate optical components of various thicknesses, regardless of whether the fiber optic connector is adapted to connect to fiber optic connectors having a floating, spring-biased design.

A kit including at least one coupler and a plurality of optical components is also provided. The kit may also include additional couplers for accommodating the optical elements, e.g. to connect to various types of fiber optic connectors. Optionally, the holder elements and mating elements may be configured such that every holder element is connectable to every mating element, so that a coupler may be assembled to act as an adapter for coupling a first fiber optic cable, having a first type of connector, to a second fiber optic cable, having a second type of connector.

Type of Offer: Licensing

Next Patent »
« More Material Science Patents

Share on      

CrowdSell Your Patent